Acura = Alfa-Romeo = Alpina = Artega = Ascari = Aston-Martin = Audi = BMW = Bentley = Brabus = Bugatti = Buick = Cadillac = Caparo = Chevrolet = Chrysler = Citroen = Covini = Dacia = Daewoo = Daihatsu = Daimler = Devon = Dodge = Donkervoort = Farbio = Ferrari = Fiat = Fisker = Ford = GM = GMC = Gumpert = Holden = Honda = Hummer = Hyundai = Infiniti = Isuzu = Italdesign = Jaguar = Jeep = KTM = Kia = Koenigsegg = Lamborghini = Lancia = Land Rover = Leblanc = Lexus = Lincoln = Lobini = Lotus = MG = Mansory = Maserati = Maybach = Mazda = Mazel = McLaren = Mercedes-Benz = Mercury = Mindset = Mini = Mitsubishi = Morgan = Nismo = Nissan = Noble = ORCA = Oldsmobile = Opel = Peugeot = PGO = Pagani = Plymouth = Pontiac = Porsche = Renault = Rinspeed = Rolls-Royce = Rover = Saab = Saturn = Scion = Skoda = Smart = Spyker = SsangYong = Startech = Stola = Strosek = Suzuki = Torino = Subaru = Think = Toyota = Tramontana = Valmet = Vauxhall = Venturi = Volkswagen = Volvo = Wiesmann = Yes = Zagato = Zenvo.

Saturday, October 22, 2011

McLaren MP4-12C, 2011

 
 
McLaren MP4-12C, 2011

The McLaren MP4-12C is revealed as the first in a range of high-performance sports cars from McLaren Automotive, the independent car division based at the McLaren Technology Centre in Woking, England. The 12C, and future models within the range, will challenge the world's best sports cars, benefiting from the expertise and virtuosity of the McLaren Group.

20 years of sports car design, engineering and production combined with inspirational success in Formula 1 have driven Ron Dennis, McLaren Automotive Chairman, to announce his plans for the ultimate line-up of technology-led and customer-focused performance cars for the 21st century. The rules in the sports car world are about to be re-written.

The Inside
The heart of the new car is the Carbon MonoCell. McLaren pioneered the use of carbon composite construction in the 1981 Formula 1 MP4/1 model and set a trend that all Formula 1 teams have followed. The company brought carbon fibre to road cars for the first time with the 1993 McLaren F1 and then built on this experience with a carbon fibre chassis and body on the SLR manufactured to the same exacting standards, but in higher volumes.

Adding lightness
Weight is the enemy of performance in every area of car design. It affects acceleration, speed, handling, fuel consumption and CO2 emissions - everything. McLaren Automotive engineers pursued weight saving obsessively. Like:
  •  The Carbon MonoCell not only reduces the weight of the structure but also allows for the use of much lighter weight body panels.
  • The close position of the driver and passenger allows a narrower, lighter body while giving improved visibility with a clearer perception of the car's extremities.
  • Brakes with forged aluminium hubs save 8 kg and weigh less than optional carbon ceramic brakes.
  • Lightweight exhaust pipes exit straight out the rear of the car, minimizing their length and weight.
  • Airflow-assisted Airbrake deployment dramatically reduces weight of the Airbrake activation system.
  • Small, compact downsized engine coupled to lightweight compact SSG minimizes vehicle length, weight and polar moment of inertia.
  • Significant weight was pared off the alloy wheels through intensive Finite Element Analysis of wall thicknesses.
  • The engine cooling radiators were mounted at the rear, as close to the engine as possible, to minimize the pipework, the fluids contained within them, and therefore weight. They were also mounted in car line to minimize vehicle width.

Might expect at McLaren, everything has a purpose and the nomenclature is no exception.
    * 'MP4' has been the chassis designation for all McLaren Formula 1 cars since 1981. It stands for McLaren Project 4, resulting from the merger of Ron Dennis' Project 4 organisation with McLaren.
    * The '12' refers to McLaren's internal Vehicle Performance Index through which it rates key performance criteria both for competitors and for its own cars. The criteria combine power, weight, emissions, and aerodynamic efficiency. The coalition of all these values delivers an overall performance index that has been used as a benchmark throughout the car's development.
    * The 'C' refers to Carbon, highlighting the unique application of carbon fibre technology to the future range of McLaren sports cars.

The elements of this name represent everything that the McLaren MP4-12C stands for:
  •  'MP4' represents the racing bloodline
  •  '12' represents the focus on complete performance and efficiency
  •  'C' represents the revolutionary Carbon MonoCell

A carbon fibre heart
Light weight and performance are defining philosophies at McLaren. But outright power alone is of little significance if a car's weight saps output or if that power is unmanageable and compromises the driving experience or results in unacceptable emissions.

The Powertrain: pure McLaren
The McLaren MP4-12C is powered by a twin-turbocharged, 3.8 litre 90° V8 engine - the 'M838T'. This marks the start of a new era in 'core' segment sports cars - smaller capacity, lighter weight, higher efficiency and more economical power units. The engine has the highest specific power output in its segment which, when allied to its low weight carbon composite chassis, delivers exemplary power- and torque-to-weight ratios.

In practice the latency of the shift is virtually zero, the actual gear change time is very fast and the level of impulse can be varied according to the gearbox mode. Considering that McLaren was the first Formula 1 team to introduce seamless shift gearchanges into motor racing, it was a natural step to develop such a bespoke transmission to its sports car project.

The Chassis: Proactive control
The suspension for the McLaren MP4-12C breaks new ground, offering hitherto unseen levels of roll control and grip (an almost flat cornering attitude, depending on the programme selected).

Though such track-like responses would normally imply a rock-hard ride, the 12C delivers compliance and ride comfort more akin to an executive saloon car. The mix of occupant cosseting and sporting potential is truly unique. The 12C offers the driver both class-leading ride comfort and class-leading performance.

Inside: it all starts with the driver
McLaren designers paid great attention to all-round visibility for both safety and driving precision.
The low cowl gives a full six degrees downward vision from eye height and, importantly, allows the driver a clear view of the front of the car. The view of the top of the front wings, with the highest point positioned directly above the centre of the wheel, also facilitates perfect placement of the 12C in a corner. Rear vision is excellent too and an internal buttress with a rear three-quarter glass provides a clear rearward view.

The McLaren F1, the driver has controls on both sides, which allows for a rational positioning of switches:
  • Climate controls on each door console
  • Telematics on the upper centre console
  • Active Dynamics Panel on the middle centre console
  • Transmission and minor controls on the tunnel console
  • Trip computer and cruise controls on steering column

The Active Dynamics Panel provides two rotary switches and four push buttons:
  •  'Start/Stop'
  •  'Active' activates all the dynamic controls.
  •  'Winter' sets powertrain, suspension and electronic aids to maximum driver support.
  •  'Launch' initiates the launch control system.
  •  The two rotary switches control 'powertrain' and 'handling', each having three position settings for normal, sport and high performance driving modes.
  •  'Powertrain' changes throttle response, gearbox strategy, shift times and impulse (how much one can feel the gearchange). The coaxial 'Manual' button controls use of manual gearbox functions.
  •  'Handling' changes stability control, steering weight, suspension firmness and roll stiffness. The coaxial 'Aero' button allows the driver to deploy the airbrake for increased downforce.

The interior's simplicity belies a world-class level of comfort and safety features that will include a full quota of airbags, fully automatic dual zone climate control, sophisticated telematics and audio systems, parking sensors, trip computer, cruise control and electric memory seats.

Testing and simulation
McLaren has developed one of the most sophisticated driving simulators in the world. It is an immensely powerful tool that can be used to predict handling, performance, and a multitude of other dynamic properties.

The simulator was initially designed to improve the performance of the Formula 1 cars. But it has also been used intensively in the design and development process for the 12C, where modelling offers the opportunity to test likely outcomes without having to build a component that might turn out to be inadequate. It saves both money and time and it is perhaps the most effective technology transfer from Formula 1 to road cars; the handling and suspension of the McLaren MP4-12C was developed using exactly the same tools and techniques as the McLaren Formula 1 cars.

Production
The production process for the McLaren MP4-12C will enable McLaren to build on its recent success of record production volumes and quality for a luxury supercar with the SLR.
The McLaren Production System brings a large scale lean production mentality into a small-scale, flexible operation. The process is championed by Production Director, Alan Foster's experiences at Japanese and European car manufacturers.

Aftersales, retail distribution, personalisation
Not only is McLaren establishing a new company, a new production plant, an all-new high performance sports car engineered and developed in house... it is also building a global network of retail distribution partners.

0 comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...